

PAT-003-1172004

Seat No. _____

M. Sc. (Statistics) (Sem. II) (CBCS) Examination August / September - 2020

MS-204: Sampling Techniques

Faculty Code: 003

Subject Code: 1172004

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

- 1 Answer the following questions: (Any seven) 14
 - (1) Write limitation of Stratified Random Sampling.
 - (2) Write merits of Simple Random Sampling.
 - (3) Define Multistage Sampling.
 - (4) Define Stratified sampling.
 - (5) Define Parameter and Statistics.
 - (6) In what situation sampling inevitable?
 - (7) Define the formula for estimating mean of sample size.
 - (8) Write the characteristic of a good sample.
 - (9) Define Population.
 - (10) Define Sample and Sample size.
- 2 Answer the following questions: (any two)

14

- (1) For studying a variable characteristic of the population, observations are 17, 14, 15, 16, 18. How many different sample of size 3 can be taken from this population without replacement? Verify that the mean of the sample means is equal to the population mean also find the variance as sample mean.
- (2) Write the difference between population study and sample study.
- (3) Write short note on different sampling methods.

3 Answer the following questions:

14

- (1) Explain Cluster sampling with example.
- (2) Explain Lahiri's method for selection of PPS sample with example.

OR

3 Answer the following questions:

14

- (1) Explain Two stage sampling in brief.
- (2) Comparison of regression estimator with SRSWOR and Ratio estimator.
- 4 Answer the following questions:

14

- (1) Explain Double sampling for unbiased ratio estimator.
- (2) Why double sampling is used or necessary? Also write non-sampling error.
- 5 Answer the following questions: (any two)

14

(1) Prove that : $E(\overline{Y_{nm}}) = \overline{Y}$ and

$$V(\overline{Y_{nm}}) = \left(\frac{1}{n} - \frac{1}{N}\right)S_b^2 + \frac{1}{n}\left(\frac{1}{m} - \frac{1}{M}\right)\overline{S}_w^2$$

- (2) Explain Murthy's unordered estimator method.
- (3) Find out the $\overline{y_{st}}$ and $V(\overline{y_{st}})$ from the following data :

$$N_1 = 120$$
 $\overline{y_1} = 42$ $S_1^2 = 60$ $n_1 = 12$

$$N_2 = 100$$
 $\overline{y_2} = 45$ $S_2^2 = 50$ $n_2 = 10$

$$N_3 = 80$$
 $\overline{y_3} = 50$ $S_3^2 = 70$ $n_3 = 10$

(4) Prove the Central Limit Theorem.